
// ZSW PV Materials Research: Printable solar cells and new materials

 $\ensuremath{/\!/}\xspace$ Solutions for solar cells based on organic or inorganic absorber materials

// Semitransparent & tandem cells

// Low-cost, highly abundant material Cu₂ZnSn(S,Se)₄ (SEM cross-section)

Printable low-cost solar cells:

ZSW develops organic and inorganic solar cells: vacuum-free, low-cost, solution-processible.

Organic solar cells:

// On glass and flexible substrates: Potentially cheap materials, no vacuum processes and no high temperatures needed

→ Status: ~ 7 % cell efficiency (glass)

// Semitransparent cells with various colours: New fields of applications (window integration etc.)

→ Status: ~ 5 % cell efficiency (glass)

// Tandem cells:

Stacked layers for expanded spectral range

→ Status: ~ 7 % cell efficiency (glass)

High-efficiency materials: Cu(In,Ga)Se₂

// Transfer high efficiency to low-cost production methods: Highest potential of all thin-film materials

// Vacuum-free selenization of printed precursor layers

→ Status: > 11 % cell efficiency

Abundant, low-cost materials: $Cu_2ZnSn(S,Se)_{L}$

// Similar to CIGS, but based on low-cost, abundant, non-toxic elements. Next generation?

// Vacuum-free selenization of printed precursor layers

→ Status: > 10 % cell efficiency

Perovskite material

// Wide gap material for use in tandem solar cells with CIGS or CZTS

Contact

Claudia Brusdeylins +49 (0)711 7870-278 claudia.brusdeylins@zsw-bw.de

