// ZSW PV Materials Research: Printable solar cells and new materials

 $\ensuremath{/\!/}\xspace$ Solutions for solar cells based on organic or inorganic absorber materials

// Low-cost, highly abundant material Cu₂ZnSn(S,Se)₄ (SEM cross-section)

// Semitransparent perovskite solar cell from the ZSW lab

Printable low-cost solar cells:

ZSW develops organic and inorganic solar cells: vacuum-free, low-cost, solution-processible.

Organic solar cells:

// On glass and flexible substrates:

Potentially cheap materials, no vacuum processes and no high temperatures needed

→ Status: ~ 7 % cell efficiency (glass)

// Slot-die-coated cell

→ Status: ~ 6 % cell efficiency

// Semitransparent cells with various colours:

New fields of applications (window integration etc.)

→ Status: ~ 5 % cell efficiency (glass)

// Tandem cells:

Stacked layers for expanded spectral range

→ Status: ~ 7 % cell efficiency (glass)

Abundant, low-cost materials: Kesterite Cu₂ZnSn(S,Se)₄

// Similar to Cu(In,Ga)Se₂ (CIGS), but based on low-cost, abundant, non-toxic elements.

// Vacuum-free selenization of printed precursor layers

→ Status: > 10 % cell efficiency

// Also possible as high-band-gap material for the application as top cell in tandem solar cells by substituting tin for germanium

→ Status: ~ 6 % cell efficiency

Perovskite material

// Wide gap material for use in tandem solar cells with CIGS or Cu₂ZnSn(S,Se)₄

→ Status: ~ 15 % normal cell efficiency

→ Status: ~ 12 % semi-transparent cell efficiency

Contact

Claudia Brusdeylins

+49 (0)711 7870-278

claudia.brusdeylins@zsw-bw.de

